Ecosyste.ms: Packages

An open API service providing package, version and dependency metadata of many open source software ecosystems and registries.

Top 8.6% forks on hackage.haskell.org

hackage.haskell.org : frp-arduino

[Index] Package maintainers For package maintainers and hackage trustees Candidates We believe that programming the Arduino can be more fun if we don't have to use the C language to program it. We aim to create a new language that allows us to program the Arduino using higher-level constructs. Our mission: Arduino programming without the hassle of C The language we create has the following properties: Lets explore them in more detail. This section introduces FRP and shows how it fits in the domain of programming an Arduino. The central building block in FRP is a stream. A stream contains values that change over time. Consider an input pin on the Arduino. If we constantly read the value of the pin we will get different values (high or low) over time: We could take this stream and assign it to an output pin. Whenever there is a new value on the input stream, that value will be sent to the output pin. In this example we have a led connected to the output pin: So building an Arduino application using FRP involves capturing inputs as streams, doing some interesting calculations (we'll come to that), and assigning streams to outputs. The most common thing we do with streams is to transform the values in some way. This operation is called map (mapS). Let's say we have a stream of numbers: We can transform this stream to a stream of booleans by mapping a function that converts even numbers to true and odd numbers to false: We now have a stream that alternates its boolean value at a time interval. Mapping is always a one-to-one conversion. Streams can also be used to keep track of state. We achieve that with the fold (foldpS) operation. A fold is like a map where we also have access to a state and the output is the new state. Let's say we have a stream of booleans representing if a button is pressed or not. Now we want a stream that keeps track of the number of button presses. We can do that by folding the following function (pseudo code) with an initial clickCount value of 0: The very first time clickCount is 0. Subsequent values are incremented by one if the boolean value is true, otherwise we just pass the current clickCount along. Sometimes we would like to discard values from a stream. We do that with the filter (filterS) operation. We can for example keep all even numbers in a stream: Our language is embedded in the Haskell language. That means that when we write programs in our language, we are actually writing Haskell programs. However, our programs will not look like standard Haskell because they use custom operators that are more suited to the FRP paradigm. By hosting our language inside Haskell, as opposed to making up our own custom syntax, we gain a few things: When we combine our program with the language library, we get an executable that, when run, will produce a C file: The executable is a compiler from our EDSL to C. In order to make our EDSL execute on the Arduino, we compile it to a C source file which we then turn into avr assembly code by using the avr gcc toolchain. In this section we will see what our EDSL looks like and what kinds of programs we can write using it. Command to compile an example: Command to compile and upload an example to a connected Arduino: A board name can be specified as an environment variable if using a board other than the Arduino Uno. Currently supported board names include "Uno" (default Arduino Uno) and "Nano" (Arduino Nano). Before we can run these commands, we need to install a few dependencies: Haskell should be installed system wide, but Arduino-Makefile should just be copied to the root of this repository. In order to use Arduino-Makefile, we also need standard build tools like make and gcc, and in particular, the gcc toolchain for avr. On a Fedora system, we can install all dependencies with the following commands: Hspec is required for tests to pass: The arduino-core package depends on the following packages: This is the hello world of Arduino programs. Lets examine this example line by line: This imports functions that allow us to define a program in the EDSL. The main function is the standard main function in Haskell. The compileProgram function has the following type: That means that we can define a set of actions in the do-block that we pass to compileProgram. It takes those actions, builds an internal representation of the program, and then generates C code and writes that to a file. So what action is defined by the last line in the example? Let's look at the type for the =: operator: It takes an output of a specific type and connects it to a stream of values of the same type. The types of digitalOutput and pin13 reveal that we have an output for bits: That means that the stream we define on the right hand side has to be a stream of bits. The stream is created with the following expression: Let's look at the types of the individual components: clock is a built in stream that produces incrementing integers at a given time interval. toggle is a function that converts a stream of words to a stream of bits by mapping the isEven function: Even words are converted to 1 and odd words are converted to 0. ~> is an operator that takes a stream on the left hand side and a function on the right hand side. The result is a stream that we get by applying the function to the stream on the left hand side. The resulting stream in the example is a stream of bits that toggles between 1 and 0 values at a specific time interval. When we connect that stream to the pin where the led is connect, the led will blink at a specific time interval. This example shows how to group two values together and output them to two different outputs. This is like blinking a pair of leds except that the frequency of the blinks in this example depends on an analog input. This example shows how to write bytes to the UART output. This example shows how to display text on an LCD display. The API documentation for the latest version is hosted in the Modules section on Hackage: http://hackage.haskell.org/package/frp-arduino We want to be welcoming to newcomers. In particular, if there is something you don't understand, please let us know and we'll try to explain it and improve our documentation. To ask a question, create a new issue and attach the question label. The contributors are listed in AUTHORS (add yourself). We use the C4.1 (Collective Code Construction Contract) process for contributions. More discussions and explanations of the process can be found in the The ZeroMQ Community, in particular here. Comments on the process: A patch MUST compile cleanly and pass project self-tests on at least the principle target platform. In our case, this means that ./test should run without failure. Below is a collection of information to help developers extend and improve frp-arduino. The Haskell library that implements the language and all examples are free software, distributed under the GNU General Public License, version 3. For more information, see COPYING. This document (README.md) is automatically generated from the sources in the doc folder by running python doc/generate_readme.py.

Registry - Source - Homepage - JSON
purl: pkg:hackage/frp-arduino
Keywords: gpl, language, library
License: GPL-3.0-only
Latest release: about 6 years ago
First release: over 9 years ago
Dependent repositories: 1
Downloads: 3,999 total
Stars: 246 on GitHub
Forks: 20 on GitHub
See more repository details: repos.ecosyste.ms
Last synced: 6 days ago

    Loading...
    Readme
    Loading...