Ecosyste.ms: Packages

An open API service providing package, version and dependency metadata of many open source software ecosystems and registries.

Top 0.9% on proxy.golang.org
Top 0.7% dependent packages on proxy.golang.org
Top 1.1% dependent repos on proxy.golang.org
Top 1.3% forks on proxy.golang.org
Top 0.7% docker downloads on proxy.golang.org

proxy.golang.org : github.com/lni/dragonboat/v3

Package dragonboat is a multi-group Raft implementation. The NodeHost struct is the facade interface for all features provided by the dragonboat package. Each NodeHost instance usually runs on a separate host managing its CPU, storage and network resources. Each NodeHost can manage Raft nodes from many different Raft groups known as Raft clusters. Each Raft cluster is identified by its ClusterID and it usually consists of multiple nodes, each identified its NodeID value. Nodes from the same Raft cluster can be considered as replicas of the same data, they are suppose to be distributed on different NodeHost instances across the network, this brings fault tolerance to machine and network failures as application data stored in the Raft cluster will be available as long as the majority of its managing NodeHost instances (i.e. its underlying hosts) are available. User applications can leverage the power of the Raft protocol implemented in dragonboat by implementing the IStateMachine or IOnDiskStateMachine component, as defined in github.com/lni/dragonboat/v3/statemachine. Known as user state machines, each IStateMachine and IOnDiskStateMachine instance is in charge of updating, querying and snapshotting application data with minimum exposure to the complexity of the Raft protocol implementation. User applications can use NodeHost's APIs to update the state of their IStateMachine or IOnDiskStateMachine instances, this is called making proposals. Once accepted by the majority nodes of a Raft cluster, the proposal is considered as committed and it will be applied on all member nodes of the Raft cluster. Applications can also make linearizable reads to query the state of the IStateMachine or IOnDiskStateMachine instances. Dragonboat employs the ReadIndex protocol invented by Diego Ongaro for fast linearizable reads. Dragonboat guarantees the linearizability of your I/O when interacting with the IStateMachine or IOnDiskStateMachine instances. In plain English, writes (via making proposal) to your Raft cluster appears to be instantaneous, once a write is completed, all later reads (linearizable read using the ReadIndex protocol as implemented and provided in dragonboat) should return the value of that write or a later write. Once a value is returned by a linearizable read, all later reads should return the same value or the result of a later write. To strictly provide such guarantee, we need to implement the at-most-once semantic required by linearizability. For a client, when it retries the proposal that failed to complete before its deadline during the previous attempt, it has the risk to have the same proposal committed and applied twice into the user state machine. Dragonboat prevents this by implementing the client session concept described in Diego Ongaro's PhD thesis. Arbitrary number of Raft clusters can be launched across the network simultaneously to aggregate distributed processing and storage capacities. Users can also make membership change requests to add or remove nodes from any interested Raft cluster. NodeHost APIs for making the above mentioned requests can be loosely classified into two categories, synchronous and asynchronous APIs. Synchronous APIs will not return until the completion of the requested operation. Their method names all start with Sync*. The asynchronous counterparts of such synchronous APIs, on the other hand, usually return immediately. This allows users to concurrently initiate multiple such asynchronous operations to save the total amount of time required to complete all of them. Dragonboat is a feature complete Multi-Group Raft implementation - snapshotting, membership change, leadership transfer, non-voting members and disk based state machine are all provided. Dragonboat is also extensively optimized. The Raft protocol implementation is fully pipelined, meaning proposals can start before the completion of previous proposals. This is critical for system throughput in high latency environment. Dragonboat is also fully batched, internal operations are batched whenever possible to maximize the overall throughput.

Registry - Source - Documentation - JSON
purl: pkg:golang/github.com/lni/dragonboat/v3
Keywords: consensus, distributed-consensus, distributed-storage, distributed-systems, go, golang, paxos, raft, raft-algorithm, raft-protocol, replicated-state-machines
License: Apache-2.0
Latest release: 8 months ago
First release: almost 5 years ago
Namespace: github.com/lni/dragonboat
Dependent packages: 45
Dependent repositories: 28
Stars: 4,577 on GitHub
Forks: 504 on GitHub
Docker dependents: 9
Docker downloads: 188,604
See more repository details: repos.ecosyste.ms
Last synced: 3 days ago

    Loading...
    Readme
    Loading...