Ecosyste.ms: Packages

An open API service providing package, version and dependency metadata of many open source software ecosystems and registries.

Top 1.6% on proxy.golang.org
Top 1.6% dependent packages on proxy.golang.org
Top 1.6% dependent repos on proxy.golang.org
Top 1.6% forks on proxy.golang.org
Top 1.8% docker downloads on proxy.golang.org

proxy.golang.org : github.com/zalando/skipper

Package skipper provides an HTTP routing library with flexible configuration as well as a runtime update of the routing rules. Skipper works as an HTTP reverse proxy that is responsible for mapping incoming requests to multiple HTTP backend services, based on routes that are selected by the request attributes. At the same time, both the requests and the responses can be augmented by a filter chain that is specifically defined for each route. Optionally, it can provide circuit breaker mechanism individually for each backend host. Skipper can load and update the route definitions from multiple data sources without being restarted. It provides a default executable command with a few built-in filters, however, its primary use case is to be extended with custom filters, predicates or data sources. For further information read 'Extending Skipper'. Skipper took the core design and inspiration from Vulcand: https://github.com/mailgun/vulcand. Skipper is 'go get' compatible. If needed, create a 'go workspace' first: Get the Skipper packages: Create a file with a route: Optionally, verify the syntax of the file: Start Skipper and make an HTTP request: The core of Skipper's request processing is implemented by a reverse proxy in the 'proxy' package. The proxy receives the incoming request, forwards it to the routing engine in order to receive the most specific matching route. When a route matches, the request is forwarded to all filters defined by it. The filters can modify the request or execute any kind of program logic. Once the request has been processed by all the filters, it is forwarded to the backend endpoint of the route. The response from the backend goes once again through all the filters in reverse order. Finally, it is mapped as the response of the original incoming request. Besides the default proxying mechanism, it is possible to define routes without a real network backend endpoint. One of these cases is called a 'shunt' backend, in which case one of the filters needs to handle the request providing its own response (e.g. the 'static' filter). Actually, filters themselves can instruct the request flow to shunt by calling the Serve(*http.Response) method of the filter context. Another case of a route without a network backend is the 'loopback'. A loopback route can be used to match a request, modified by filters, against the lookup tree with different conditions and then execute a different route. One example scenario can be to use a single route as an entry point to execute some calculation to get an A/B testing decision and then matching the updated request metadata for the actual destination route. This way the calculation can be executed for only those requests that don't contain information about a previously calculated decision. For further details, see the 'proxy' and 'filters' package documentation. Finding a request's route happens by matching the request attributes to the conditions in the route's definitions. Such definitions may have the following conditions: - method - path (optionally with wildcards) - path regular expressions - host regular expressions - headers - header regular expressions It is also possible to create custom predicates with any other matching criteria. The relation between the conditions in a route definition is 'and', meaning, that a request must fulfill each condition to match a route. For further details, see the 'routing' package documentation. Filters are applied in order of definition to the request and in reverse order to the response. They are used to modify request and response attributes, such as headers, or execute background tasks, like logging. Some filters may handle the requests without proxying them to service backends. Filters, depending on their implementation, may accept/require parameters, that are set specifically to the route. For further details, see the 'filters' package documentation. Each route has one of the following backends: HTTP endpoint, shunt, loopback or dynamic. Backend endpoints can be any HTTP service. They are specified by their network address, including the protocol scheme, the domain name or the IP address, and optionally the port number: e.g. "https://www.example.org:4242". (The path and query are sent from the original request, or set by filters.) A shunt route means that Skipper handles the request alone and doesn't make requests to a backend service. In this case, it is the responsibility of one of the filters to generate the response. A loopback route executes the routing mechanism on current state of the request from the start, including the route lookup. This way it serves as a form of an internal redirect. A dynamic route means that the final target will be defined in a filter. One of the filters in the chain must set the target backend url explicitly. Route definitions consist of the following: - request matching conditions (predicates) - filter chain (optional) - backend The eskip package implements the in-memory and text representations of route definitions, including a parser. (Note to contributors: in order to stay compatible with 'go get', the generated part of the parser is stored in the repository. When changing the grammar, 'go generate' needs to be executed explicitly to update the parser.) For further details, see the 'eskip' package documentation Skipper has filter implementations of basic auth and OAuth2. It can be integrated with tokeninfo based OAuth2 providers. For details, see: https://godoc.org/github.com/zalando/skipper/filters/auth. Skipper's route definitions of Skipper are loaded from one or more data sources. It can receive incremental updates from those data sources at runtime. It provides three different data clients: - Kubernetes: Skipper can be used as part of a Kubernetes Ingress Controller implementation together with https://github.com/zalando-incubator/kube-ingress-aws-controller . In this scenario, Skipper uses the Kubernetes API's Ingress extensions as a source for routing. For a complete deployment example, see more details in: https://github.com/zalando-incubator/kubernetes-on-aws/ . - Innkeeper: the Innkeeper service implements a storage for large sets of Skipper routes, with an HTTP+JSON API, OAuth2 authentication and role management. See the 'innkeeper' package and https://github.com/zalando/innkeeper. - etcd: Skipper can load routes and receive updates from etcd clusters (https://github.com/coreos/etcd). See the 'etcd' package. - static file: package eskipfile implements a simple data client, which can load route definitions from a static file in eskip format. Currently, it loads the routes on startup. It doesn't support runtime updates. Skipper can use additional data sources, provided by extensions. Sources must implement the DataClient interface in the routing package. Skipper provides circuit breakers, configured either globally, based on backend hosts or based on individual routes. It supports two types of circuit breaker behavior: open on N consecutive failures, or open on N failures out of M requests. For details, see: https://godoc.org/github.com/zalando/skipper/circuit. Skipper can be started with the default executable command 'skipper', or as a library built into an application. The easiest way to start Skipper as a library is to execute the 'Run' function of the current, root package. Each option accepted by the 'Run' function is wired in the default executable as well, as a command line flag. E.g. EtcdUrls becomes -etcd-urls as a comma separated list. For command line help, enter: An additional utility, eskip, can be used to verify, print, update and delete routes from/to files or etcd (Innkeeper on the roadmap). See the cmd/eskip command package, and/or enter in the command line: Skipper doesn't use dynamically loaded plugins, however, it can be used as a library, and it can be extended with custom predicates, filters and/or custom data sources. To create a custom predicate, one needs to implement the PredicateSpec interface in the routing package. Instances of the PredicateSpec are used internally by the routing package to create the actual Predicate objects as referenced in eskip routes, with concrete arguments. Example, randompredicate.go: In the above example, a custom predicate is created, that can be referenced in eskip definitions with the name 'Random': To create a custom filter we need to implement the Spec interface of the filters package. 'Spec' is the specification of a filter, and it is used to create concrete filter instances, while the raw route definitions are processed. Example, hellofilter.go: The above example creates a filter specification, and in the routes where they are included, the filter instances will set the 'X-Hello' header for each and every response. The name of the filter is 'hello', and in a route definition it is referenced as: The easiest way to create a custom Skipper variant is to implement the required filters (as in the example above) by importing the Skipper package, and starting it with the 'Run' command. Example, hello.go: A file containing the routes, routes.eskip: Start the custom router: The 'Run' function in the root Skipper package starts its own listener but it doesn't provide the best composability. The proxy package, however, provides a standard http.Handler, so it is possible to use it in a more complex solution as a building block for routing. Skipper provides detailed logging of failures, and access logs in Apache log format. Skipper also collects detailed performance metrics, and exposes them on a separate listener endpoint for pulling snapshots. For details, see the 'logging' and 'metrics' packages documentation. The router's performance depends on the environment and on the used filters. Under ideal circumstances, and without filters, the biggest time factor is the route lookup. Skipper is able to scale to thousands of routes with logarithmic performance degradation. However, this comes at the cost of increased memory consumption, due to storing the whole lookup tree in a single structure. Benchmarks for the tree lookup can be run by: In case more aggressive scale is needed, it is possible to setup Skipper in a cascade model, with multiple Skipper instances for specific route segments.

Registry - Source - Documentation - JSON
purl: pkg:golang/github.com/zalando/skipper
Keywords: cloud, eskip, etcd, go, http-proxy, ingress-controller, kubernetes, kubernetes-controller, kubernetes-ingress, mosaic, proxy, router, skipper
License: Apache-2.0,MIT
Latest release: 3 months ago
First release: over 7 years ago
Namespace: github.com/zalando
Dependent packages: 10
Dependent repositories: 12
Stars: 2,839 on GitHub
Forks: 315 on GitHub
Docker dependents: 1
Docker downloads: 6
See more repository details: repos.ecosyste.ms
Last synced: about 13 hours ago

    Loading...
    Readme
    Loading...