pypi.org : labmath3
Module for basic math in the general vicinity of computational number theory
Registry
-
Source
- Homepage
- Documentation
- JSON
purl: pkg:pypi/labmath3
Keywords:
BPSW
, LMO
, almost prime
, almost-prime
, chinese remainder theorem
, computational number theory
, continued fraction
, continued fractions
, convergent
, convergents
, crt
, determinant
, dirichlet character
, dirichlet convolution
, discriminant
, divisor
, divisor counting
, divisors
, egyptian fraction
, egyptian fractions
, elliptic curve
, elliptic curve factoring
, elliptic curve factorization
, elliptic curve method
, extended euclidean algorithm
, extended gcd
, extra strong lucas probable primality test
, factoring
, factorization
, farey
, farey sequence
, fibo
, fibonacci
, fibonacci numbers
, fibonacci sequence
, frobenius
, generalized pell equation
, hamming numbers
, hensel lifting
, integer factoring
, integer factorization
, jacobi symbol
, kronecker symbol
, lagarias-miller-odlyzko
, legendre symbol
, linear recurrence
, linear recurrences
, lprp
, lucas numbers
, lucas probable primality test
, lucas sequence
, lucas sequences
, math
, mathematics
, miller rabin
, miller-rabin
, mobius
, mobius function
, modular square root
, modular square roots
, moebius
, moebius function
, mpqs
, multiple polynomial quadratic sieve
, multiple-polynomial quadratic sieve
, möbius
, möbius function
, n+1
, n-1
, number theory
, partitions
, pell
, pell equation
, pocklington
, pollard rho
, pollard's rho
, primality
, primality testing
, prime counting
, prime counting function
, prime numbers
, prime-counting
, prime-counting function
, primepi
, primes
, pythagorean triple
, pythagorean triples
, quadratic frobenius
, quadratic sieve
, riemann zeta function
, segmented sieve
, self initializing quadratic sieve
, self-initializing quadratic sieve
, semiprime
, sieve
, sieve of eratosthenes
, siqs
, slprp
, smooth numbers
, sprp
, stormer's theorem
, strong lucas probable primality test
, strong probable primality test
, størmer's theorem
, totient
, xgcd
, xslprp
, zeta function
License: MIT
Latest release: 2 months ago
First release: 2 months ago
Downloads: 38 last month
Stars: 0 on GitHub
Forks: 0 on GitHub
See more repository details: repos.ecosyste.ms
Last synced: 2 days ago